就許多中央處理器 (CPU) 而言,規(guī)范要求電源必須能夠提供大而快速的充電輸出電流,特別是當處理器變換工作模式的時候。例如,在 1V 的系統(tǒng)中,100 A/uS 負載瞬態(tài)可能會要求將電源電壓穩(wěn)定在 3% 以內(nèi)。解決這一問題的關鍵就是要認識到 這不僅僅是電源的問題,電源分配系統(tǒng)也是一個重要因素,而且在一款解決方案中我們是很難將這二者嚴格地劃清界限。
這些高 di/dt 要求的意義就在于電壓源必須具有非常低的電感。重新整理下面的公式并求解得到允許的電源電感:
在快速負載電流瞬態(tài)通道中電感僅為 0.3 nH。為了便于比較,我們來看一個四層電路板上的0.1 英寸 (0.25 cm) 寬電路板線跡所具有的電感大約為 0.7 nH/英寸 (0.3 nH/cm)。IC 封裝中接合線的典型電感在1 nH 范圍內(nèi),印刷電路板的過孔電感在0.2 nH 范圍內(nèi)。
此外,還有一個與旁路電容有關的串聯(lián)電感,如圖 1 所示。頂部的曲線是貼裝在四層電路板上的一個22 uF、X5R、16V、1210 陶瓷電容的阻抗。正如我們所期望的那樣(100 kHz 以下),阻抗隨著頻率的增加而下降。然而,在800 kHz時有一個串聯(lián)電感,此時電容會變得有電感性。該電感(其可以從電容值和諧振頻率計算得出)為 1.7 nH,其大大高于我們 0.3 nH 的目標值。幸運的是,您可以使用并聯(lián)電容以降低有效的 ESL。圖 1 底部的曲線為兩個并聯(lián)電容的阻抗。有趣的是諧振變得稍微低了一些,這表明有效電感并不是絕對的一半;谥C振頻率,就兩個并聯(lián)的電容而言,新電感則為 1.0 nH 或ESL 下降 40%,而非下降 50%。這一結(jié)果可以歸結(jié)為兩個原因:互連電感和兩個電容之間的互感。
![](http://power.eccn.com/uploads/article/201204/20120423101153584.jpg)
圖 1 并聯(lián)電容阻抗寄生現(xiàn)象衰減效果
電流通道的環(huán)路尺寸在一定程度上決定了連接組件中的寄生電感,組件尺寸決定了環(huán)路的面積。尺寸與電感相關系數(shù)如表 1 所示,其顯示了各種尺寸陶瓷表面貼裝電容的電容電感。一般來說,體積越大的電容具有更大的電感。該表不包括電路板上貼裝電容的電感,在我們以前的測量中該電感由 1 nH 增加到了 1.7 nH。另一個有趣的問題是端接的位置對電感有很大的影響。0805 電容在電容的較短一側(cè)有端接而0508 電容則在較長的一側(cè)有端接。這幾乎將電流通道分為了兩半,從而大降低了電感。這種變化了的結(jié)構(gòu)將電感降低了四分之一。
表 1 陶瓷 SMT 電容尺寸會影響寄生電感
尺寸
|
ESL (nH)
|
0603
|
0.6
|
0805
|
0.8
|
0508
|
0.2
|
1206
|
1.0
|
0612
|
0.2
|
1210
|
1.0
|
總之,高 di/dt 負載需要仔細考慮旁路問題以保持電源動態(tài)穩(wěn)壓。表面貼裝電容需要非?拷撦d以最小化其互連電感。電容具有可能避免大量去耦的寄生電感。降低這一寄生電感的并聯(lián)電容是有效的,但互連和互感減弱了這一效果。使用具有更短電流通道的電容也是有效的。這可以用體積較小的部件或具有交流端接(其使用了更短的尺寸用于電流)的部件來實施。
下次我們將討論高 di/dt瞬態(tài)負載以及其在設計和測試電源時的意義,敬請期待。 屆時我們的討論重點從本地旁路轉(zhuǎn)變?yōu)殡娫丛O計意義。
在《如何處理高di/dt負載瞬態(tài)(上)》中,我們討論了電流快速變化時一些負載的電容旁路要求。我們發(fā)現(xiàn)必須讓低等效串聯(lián)電感(ESL)電容器靠近負載,因為不到0.5 nH便可產(chǎn)生不可接受的電壓劇增。實際上,要達到這種低電感,要求在處理器封裝中放置多個旁路電容器和多個互連針腳。本文中,我們將討論達到電源輸出實際di/dt要求所需的旁路電容大小。
為了討論方便,圖1顯示了電源系統(tǒng)的P-SPICE模型。本圖由補償電路電源、調(diào)制器(G1)和輸出電容器組成。內(nèi)部還包括互連電感、旁路電容負載模型、DC負載和步進負載。
![](http://power.eccn.com/uploads/article/201204/20120423163812205.jpg)
圖1 簡易P-SPICE模型輔助系統(tǒng)設計
首先,你需要決定是將電源和負載看作一個個單獨的“黑匣子”,還是把問題當作一個完整的電源系統(tǒng)設計來處理。如果使用系統(tǒng)級方法,你可以利用負載旁路電容來降低電源輸出電容,從而節(jié)約系統(tǒng)成本。如果使用“黑匣子”方法,你要單獨測試電源和負載。不管使用哪種方法,你都要知道負載需要多大的旁路電容。
首先,估計電源和負載之間的互連電感和電阻的大小。這種互連阻抗(LINTERCONNECT) 形成一個旁路電容器 (CBYPASS) 低通濾波器。我們假設電源輸出阻抗較低。利用該低通濾波器的特性阻抗 (ZO)、負載步進值 (ISTEP) 和允許電壓波動(dV),建立旁路濾波器要求(方程式1-2):
方程式 1
方程式 2
求解方程式2得到Z0,然后代入方程式1,得到方程式3:
方程式 3
有趣的是,所需電容大小與負載電流的平方除以允許擾動的平方有關,因此要仔細計算這兩個值。
互連電感的范圍從并列電源的幾十nH,到遠距放置電源的數(shù)百nHs。一條較為有效的經(jīng)驗法則是,每英寸增加15 nH左右的互連電感。負載步進為10安培且允許擾動為30mV時,旁路要求范圍為5 nH的500 uF到500 nH的50 mF。
另外,這種濾波器還降低了電源的負載電流上升速率。如果無損濾波器由一個電流方波激勵,則電感電流為正弦。通過對方程式4-7中的電流波形求微分,可以計算得到上升速率。
方程式 4
方程式5
方程式6
方程式7
互連電感為5 nH,旁路電容為500 uF時,10安培步進變化可形成0.2 A/uS電源電流上升速率。更大的電感可產(chǎn)生更低的di/dt。這些數(shù)值比系統(tǒng)設計人員所規(guī)定的值要小得多。
使用系統(tǒng)級方法時,要在最大化環(huán)路帶寬的同時,最小化總電容。現(xiàn)在,請您思考如何使用“黑匣子”方法。你必須在沒有旁路電容和最大期望旁路電容的情況下,讓電源穩(wěn)定。如前所述,互連電容會推高負載的旁路電容要求。使用“黑匣子”方法時,這反過來又會影響電源的電容。連接電容范圍確定了電源的交叉頻率范圍。在電壓和電流兩種模式下,兩者均成比例關系。你可以最大化無負載電容的交叉頻率,但只要連接負載,交叉頻率就會急劇下降。
表1對舉例系統(tǒng)三個互連電感的要求電容器進行了比較。通過改變互連電感、計算負載旁路電容并設計電源的相應輸出級和控制環(huán)路,得到比較數(shù)據(jù)。案例1的負載和電源并列放置;案例2電源和負載之間的互連電感大小為中等。案例3中,使用線纜連接的電源的電感極高。要求旁路的多少直接與互連電感有關。
本例中,案例 3 是互連電感的 100 倍,旁路電容也是如此。這在電源設計中形成紋波,原因是電源在有和沒有旁路電容器的情況下都必須保持穩(wěn)定。很明顯,第一種方法更好,因為它使用的電容器最少,成本最低。案例2中,互連電感受到一定的控制,電容器數(shù)量有一定增加。案例3中,大量的互連電感帶來了嚴重的成本問題。案例2和案例3也都有一個好處:獨立的電源測試。
![](http://power.eccn.com/uploads/article/201204/20120423163812341.jpg)
表 1 利用系統(tǒng)級方法降低電源系統(tǒng)成本
圖 2 對小和大互連電感的負載瞬態(tài)期間的輸出電壓變化模擬情況進行了比較。小電感響應快速漸次減弱,而大電感則并非如此,花費了較長的時間才穩(wěn)定下來。這是由于特性阻抗更高以及諧振頻率更低。另外,如果負載電流在該諧振頻率有規(guī)律地跳動,則會出現(xiàn)極寬且具破壞性的電壓變化。
![](http://power.eccn.com/uploads/article/201204/20120423163812540.gif)
圖 2 電壓振鈴成為大互連電感的一個問題
總之,高di/dt負載要求小心謹慎地進行旁路設計,以保持電源動態(tài)調(diào)節(jié)能力。在負載和旁路電容器以及旁路電容器和負載之間,必須使用低電感互連。系統(tǒng)級方法可實現(xiàn)一種成本最低的解決方案。為了系統(tǒng)測試方便,許多系統(tǒng)工程師都忽略了這種通過降低電源電容實現(xiàn)成本節(jié)省的解決方案。 |