伊人大杳蕉在线影院75_一点不卡v中文字幕在线_黄桃AV无码免费一区二区三区_中文字幕人妻互换激情

設(shè)為主頁  加入收藏
 
·I2S數(shù)字功放IC/內(nèi)置DSP音頻算法功放芯片  ·馬達(dá)驅(qū)動IC  ·2.1聲道單芯片D類功放IC  ·內(nèi)置DC/DC升壓模塊的D類功放IC  ·鋰電充電管理IC/快充IC  ·無線遙控方案  ·直流無刷電機(jī)驅(qū)動芯片
當(dāng)前位置:首頁->技術(shù)分享
LDO噪聲詳解
文章來源: 更新時間:2013/1/1 15:04:00
在線咨詢:
給我發(fā)消息
張代明 3003290139
給我發(fā)消息
姚紅霞 3003214837
給我發(fā)消息
鄢先輝 2850985542
13713728695
 

引言

隨著通信信道的復(fù)雜度和可靠性不斷增加,人們對于電信系統(tǒng)的要求和期望也不斷提高。這些通信系統(tǒng)高度依賴于高性能、高時鐘頻率和數(shù)據(jù)轉(zhuǎn)換器器件,而這些器件的性能又非常依賴于系統(tǒng)電源軌的質(zhì)量。當(dāng)使用一個高噪聲電源供電時,時鐘或者轉(zhuǎn)換器 IC 無法達(dá)到最高性能。僅僅只是少量的電源噪聲,便會對性能產(chǎn)生極大的負(fù)面影響。本文將對一種基本 LDO 拓?fù)溥M(jìn)行仔細(xì)研究,找出其主要噪聲源,并給出最小化其輸出噪聲的一些方法。

表明電源品質(zhì)的一個關(guān)鍵參數(shù)是其噪聲輸出,它常見的參考值為 RMS 噪聲測量或者頻譜噪聲密度。為了獲得最低 RMS 噪聲或者最佳頻譜噪聲特性,線性電壓穩(wěn)壓器(例如:低壓降電壓穩(wěn)壓器,LDO),始終比開關(guān)式穩(wěn)壓器有優(yōu)勢。這讓其成為噪聲敏感型應(yīng)用的選擇。

基本 LDO 拓?fù)?/font>

一個簡單的線性電壓穩(wěn)壓器包含一個基本控制環(huán)路,其負(fù)反饋與內(nèi)部參考比較,以提供恒定電壓—與輸入電壓、溫度或者負(fù)載電流的變化或者擾動無關(guān)。

圖 1 顯示了一個 LDO 穩(wěn)壓器的基本結(jié)構(gòu)圖。紅色箭頭表示負(fù)反饋信號通路。輸出電壓 VOUT 通過反饋電阻 R1 和 R2 分壓,以提供反饋電壓 VFB。VFB 與誤差放大器負(fù)輸入端的參考電壓 VREF 比較,提供柵極驅(qū)動電壓 VGATE。最后,誤差信號驅(qū)動輸出晶體管 NFET,以對 VOUT 進(jìn)行調(diào)節(jié)。

圖 1 LDO 負(fù)反饋環(huán)路.jpg

圖 1 LDO 負(fù)反饋環(huán)路

簡單噪聲分析以圖 2 作為開始。藍(lán)色箭頭表示由常見放大器差異代表的環(huán)路子集(電壓跟隨器或者功率緩沖器)。這種電壓跟隨器電路迫使 VOUT 跟隨 VREF。VFB 為誤差信號,其參考 VREF。在穩(wěn)定狀態(tài)下,VOUT 大于 VREF,其如方程式 1 所描述:

g1.jpg

圖 2 LDO 參考電壓緩沖.jpg

圖 2 LDO 參考電壓緩沖

其中,1 + R1/R2 為誤差放大器必須達(dá)到穩(wěn)態(tài)輸出電壓 (VOUT) 的增益。

假設(shè)電壓參考不理想,并在其DC輸出電壓(VREF)上有一個有效噪聲因數(shù)VN(REF)。假設(shè)圖 2 中所有電路模塊均理想,VOUT 便為噪聲源的函數(shù)。可以輕松地對方程式 1 進(jìn)行修改,以考慮到噪聲源,如方程式 2 所示:

g2.jpg

其中,VN(REF) 為輸出的單獨(dú)噪聲影響因素,如方程式 3 所示:

g3.jpg

通過方程式 2 和 3,我們可以清楚地看到,更高的輸出電壓產(chǎn)生更高的輸出噪聲。反饋電阻 R1 和 R2 設(shè)置(或者調(diào)節(jié))輸出電壓,從而設(shè)置輸出噪聲電壓。因此,許多LDO器件的特點(diǎn)是,噪聲性能與輸出電壓有關(guān)。例如,VN = 16 µVRMS×VOUT 說明了一種標(biāo)準(zhǔn)的輸出噪聲描述方式。

主要 LDO 輸出電壓噪聲源

對于大多數(shù)典型的LDO器件來說,主要輸出噪聲源為方程式3所示經(jīng)過放大的參考噪聲。雖然總輸出噪聲因器件不同而各異,但一般都是如此。圖 3 為一個完整的結(jié)構(gòu)圖,顯示了其各個電路組件的相應(yīng)等效噪聲源。由于任何有電流流過的器件都是一個潛在的噪聲源,圖 1 和圖 2 所示所有單個組件均為一個噪聲源。

圖 4 由圖 3 改畫而來,目的是包括 OUT 節(jié)點(diǎn)的所有等效參考噪聲源。完整的噪聲方程式為:

g4.jpg

圖 3 等效噪聲源 LDO 拓?fù)?jpg

圖 3 等效噪聲源 LDO 拓?fù)?/font>

圖 4 統(tǒng)一噪聲源 LDO 拓?fù)?jpg

圖 4 統(tǒng)一噪聲源 LDO 拓?fù)?/font>

在大多數(shù)情況下,由于參考電壓模塊即能帶隙電路由許多電阻器、晶體管和電容器組成,因此 VN(REF) 往往會大于該方程式中最后三個噪聲源,其中 VN(REF) >> VN(R1) 或者 VN(REF) >> VN(R2)。因此,方程式 4 可以簡化為:

g5.jpg

就高性能 LDO 器件而言,常見的方法是添加一個降噪 (NR) 引腳,以消除參考噪聲。圖5描述了NR引腳如何降低噪聲。由于VN(REF)為主要輸出噪聲源,因此我們在參考電壓模塊(VREF)和誤差放大器之間插入一個RC濾波電容器CNR,旨在減少這種噪聲。RC 濾波器減少噪聲的程度由一個衰減函數(shù)決定:

g6.jpg

其中

g77.jpg

圖 5 參考噪聲濾波器 LDO 拓?fù)?jpg

圖 5 參考噪聲濾波器 LDO 拓?fù)?/font>

 

圖 6 RMS 噪聲與輸出電壓的關(guān)系.jpg

 

圖 6 RMS 噪聲與輸出電壓的關(guān)系

因此,放大參考噪聲被降至(1 + R1/R2) × VN(REF) × GRC,則方程式5變?yōu)椋?/font>

g7.jpg

在現(xiàn)實(shí)世界中,所有控制信號電平均依賴于頻率,包括噪聲信號在內(nèi)。如果誤差放大器帶寬有限,則高頻參考噪聲 (VN(REF)) 通過誤差放大器濾波,其方式與使用 RC 濾波器類似。但在實(shí)際情況下,誤差放大器往往具有非常寬的帶寬,因此 LDO 器件擁有非常好的電源紋波抑制 (PSRR) 性能,其為高性能 LDO 的另一個關(guān)鍵性能參數(shù)。為了滿足這種矛盾的要求,IC 廠商選擇使用寬帶寬誤差放大器,以實(shí)現(xiàn)最佳低噪聲 PSRR。如果低噪聲也為強(qiáng)制要求,則這樣做會帶來 NR 引腳功能的使用。

典型電路中參考噪聲的控制

放大參考噪聲

TI TPS74401 LDO 用于測試和測量。表 1 列出了常見配置參數(shù)。請注意,為了便于閱讀,TPS74401 產(chǎn)品說明書的軟啟動電容器 CSS 是指降噪電容器 CNR。

表 1 設(shè)置參數(shù)

表 1 設(shè)置參數(shù).jpg

 

首先,使用一個可忽略不計的小 CNR,研究放大器增益的影響。圖 6 顯示了 RMS 噪聲與輸出電壓設(shè)置的對比情況。如前所述,主要噪聲源 VN(REF) 通過反饋電阻器 R1 和 R2 的比放大。我們將方程式 7 修改為方程式 8 的形式:

g8 .jpg

其中,VN(Other)為所有其它噪聲源的和。

如果方程式 8 擬合y=ax + b的線性曲線,如圖 6 中紅色虛線所示,則 VN(REF)(斜率項)可估算為 19 µVRMS,而 VN(Other)(y 截距項)為 10.5 µVRMS。正如在后面我們根據(jù)“降噪(NR)引腳效應(yīng)”說明的那樣,CNR 的值為 1pF,目的是將 RC 濾波器效應(yīng)最小化至可忽略不計水平,而 GRC 被看作等于 1。在這種情況下,基本假定 VN(REF) 為主要噪聲源。

請注意,當(dāng) OUT 節(jié)點(diǎn)短路至 FB 節(jié)點(diǎn)時噪聲最小,其讓方程式 8 的放大器增益(1 + R1/R2)等于1(R1=0)。圖 6 顯示,該最小噪聲點(diǎn)約為 30 µVRMS。

抵銷放大參考噪聲

本小節(jié)介紹一種實(shí)現(xiàn)最小輸出噪聲配置的有效方法。如圖 7 所示,一個前饋電容器 CFF 向前傳送(繞開)R1 周圍的輸出噪聲。這種繞開或者短路做法,可防止在高于 R1 和 CFF 諧振頻率 fResonant 時參考噪聲因誤差放大器增益而增加,其中:

g8.jpg

輸出噪聲變?yōu)椋?/font>

g9.jpg

圖 7 使用噪聲最小化前饋電容(CFF) 的 LDO 拓?fù)?jpg

圖 7 使用噪聲最小化前饋電容(CFF) 的 LDO 拓?fù)?/font>

圖 8 顯示了RMS噪聲相對于前饋電容 (CFF) 和不同輸出電壓設(shè)置的變化。請注意,每個 RMS 圖線上各點(diǎn)代表上述電路狀態(tài)下整個給定帶寬的完整噪聲統(tǒng)計平均數(shù)。正如我們預(yù)計的那樣,所有曲線朝 30 µVRMS 左右的最小輸出噪聲匯集;換句話說,由于 CFF 效應(yīng),噪聲匯聚于 VN(REF) + VN(Other)。

圖 8 前饋電容對噪聲的影響.jpg

圖 8 前饋電容對噪聲的影響

圖 8 對此進(jìn)行了描述。CFF 值大于 100nF時,方程式 8 中1 + R1/R2 的放大器增益被抵銷掉。出現(xiàn)這種情況的原因是,盡管低頻噪聲未被 CFF 完全抵銷,但是低頻噪聲對 RMS 計算的總統(tǒng)計平均數(shù)影響不大。為了觀察 CFF 的實(shí)際效果,我們必需查看噪聲電壓的實(shí)際頻譜密度圖(圖9)。圖9表明,CFF=10µF 曲線的噪聲最小,但是某些頻率以上時所有曲線均接近于這條最小噪聲曲線。這些頻率相當(dāng)于由 R1 和 CFF 值決定的諧振極點(diǎn)頻率。R1 等于 31.6 kΩ 時計算得到的 CFF值,請參見表 2。

表 2 計算得諧振頻率

表 2 計算得諧振頻率.jpg

 

圖 9 表明,50 Hz 附近時,CFF=100 nF 曲線轉(zhuǎn)降。5 kHz 附近時,CFF=1 nF 曲線轉(zhuǎn)降,但是 CFF=10 pF 時諧振頻率受 LDO 噪聲總內(nèi)部效應(yīng)影響。通過觀察圖 9,我們后面均假設(shè) CFF=10µF 最小噪聲。

圖 9 各種 CFF 值的輸出頻譜噪聲密度.jpg

圖 9 各種 CFF 值的輸出頻譜噪聲密度

降噪 (NR) 引腳的效果

在 NR 引腳和接地之間使用 RC 濾波器電容(CNR)時,GRC 下降。圖 10 表明 RMS 噪聲為 CNR 的函數(shù)(參見圖 5)。稍后,我們將在第三段“其它技術(shù)考慮因素”中說明這兩條曲線的差異。

圖 10 RMS 噪聲與降噪電容的關(guān)系.jpg

圖 10 RMS 噪聲與降噪電容的關(guān)系

圖 10 利用 10 Hz 到 100 kHz 更寬融合范圍,來捕捉低頻區(qū)域的性能差異。CNR=1pF 時,兩條曲線表現(xiàn)出非常高的RMS噪聲值。盡管圖 10 沒有顯示,但不管是否 CNR=1pF,都沒有 RMS 噪聲差異。這就是為什么在前面小節(jié)“放大參考噪聲”中,我們把GRC被看作等于 1 的原因。

正如我們預(yù)計的那樣,隨著 CNR 增加,RMS 噪聲下降,并在 CNR=1µF 時朝約12.5 µVRMS 的最小輸出噪聲匯聚。

CFF= 10 µF 時,放大器增益(1 + R1/R2)可以忽略不計。因此,方程式 8 可以簡寫為:

g10.jpg

正如我們看到的那樣,VN(Other) 并不受 CNR 影響。因此,CNR 保持 10.5 µVRMS,其由圖 6 所示數(shù)據(jù)曲線擬合度決定。方程式 10 可以表示為:

g10 2.jpg

接下來,我們要確定 GRC 降噪電容的影響,這一點(diǎn)很重要。圖 10 中曲線的最小測量噪聲,讓我們可以將方程式10改寫為:

g11.jpg

其中,求解VN(REF) × GRC 得到 2 µVRMS。增加 CNR 會使參考噪聲從19.5 µVRMS降至 2 µVRMS,也就是說,在 10 Hz 到 100 kHz 頻率范圍,GRC 從整數(shù)降至 0.1 (2/19.5) 平均數(shù)。

圖 11 顯示了 CNR 如何降低頻域中的噪聲。與圖 9 所示小 CFF 值一樣,更小的 CNR 開始在高頻起作用。請注意,CNR 最大值 1µF 表明最低噪聲。盡管 CNR = 10 Nf 曲線表明最小噪聲幾乎接近于 CNR = 1 µF 的曲線,10-Nf 曲線顯示30Hz 和100Hz 之間有一小塊突出部分。

圖 11 不同 CNR 值時輸出頻譜噪聲密度與頻率的關(guān)系.jpg

圖 11 不同 CNR 值時輸出頻譜噪聲密度與頻率的關(guān)系

圖8所示曲線(CNR = 1 pF),可改進(jìn)為圖 12(CNR = 1 µF)。圖 8 顯示 CFF = 100 Nf 和 CFF = 10 µF 之間幾乎沒有 RMS 噪聲差異,但是圖 12 清楚地顯示出了差異。

圖 12 中,不管輸出電壓是多少,CFF = 10 µF 和 CNR = 1 µF 均帶來最低噪聲值12.5 µVRMS,也即最小 GRC 值(換句話說,RC濾波器的最大效果)為 0.1。12.5 µVRMS 值為 TI 器件 TPS74401 的底限噪聲。

圖 12 噪聲優(yōu)化以后 RMS 噪聲與前饋電容的關(guān)系.jpg

圖 12 噪聲優(yōu)化以后 RMS 噪聲與前饋電容的關(guān)系

當(dāng)我們把一個新LDO器件用于噪聲敏感型應(yīng)用時,利用大容量CFF和CNR電容確定這種器件的獨(dú)有本底噪聲是一種好方法。圖12表明RMS噪聲曲線匯聚于本底噪聲值。

其他技術(shù)考慮因素

降噪電容器的慢啟動效應(yīng)

除降噪以外,RC濾波器還會起到一個RC延遲電路的作用。因此,較大的CNR值會引起穩(wěn)壓器參考電壓的較大延遲。

前饋電容器的慢啟動效應(yīng)

CFF利用一種機(jī)制繞過R1反饋電阻AC信號,而憑借這種機(jī)制,其在激活事件發(fā)生后VOUT不斷上升時,也繞過輸出電壓反饋信息。直到CFF完全充電,誤差放大器才利用更大的負(fù)反饋信號,從而導(dǎo)致慢啟動。

為什么高VOUT值會導(dǎo)致更小的RMS噪聲

在圖8和圖10中,相比VOUT=0.8V的情況,VOUT=3.3V曲線的噪聲更小。我們知道,更高的電壓設(shè)置會增加參考噪聲,因此這看起來很奇怪。對于這種現(xiàn)象的解釋是,由于CFF連接至OUT節(jié)點(diǎn),因此除繞過電阻器R1的噪聲信號以外,CFF還有增加輸出電容值的效果。圖12表明,由于參考噪聲被最小化,我們便可以觀測到這種現(xiàn)象。

RMS噪聲值

由于TPS74401的本底噪聲為12.5 µVRMS,它是市場上噪聲最低的LDO之一。在設(shè)計一個超低噪聲穩(wěn)壓器過程中,12.5 µVRMS絕對值是一個較好的參考值。

結(jié)論

本文深入探討了LDO器件的基本噪聲以及如何將其降至最小,具體包括:

l 每種電路模塊對輸出噪聲的影響程度

l 參考電壓如何成為主要的噪聲源(經(jīng)誤差放大器放大)

l 如何抵銷經(jīng)過放大的參考噪聲

l NR功能的工作原理

謹(jǐn)慎選擇降噪電容器 (CNR) 和前饋電容器 (CFF),可以將 LDO 輸出噪聲最小化至器件獨(dú)有的本底噪聲水平。利用這種噪聲最小化配置,LDO 器件便可保持本底噪聲值,讓其同非優(yōu)化配置中常常影響噪聲水平的一些參數(shù)無關(guān)。

給電路添加 CNR 和 CFF 時存在慢啟動副作用,因此我們必須認(rèn)真選擇這些電容器,以實(shí)現(xiàn)快速升壓。

本文所述方法已經(jīng)用于優(yōu)化 TI 的 TPS7A8101 LDO 的噪聲。在 TPS7A8101 產(chǎn)品說明書第 10 頁,不管參數(shù)如何變化,器件都擁有恒定的噪聲值。

 
 
 
    相關(guān)產(chǎn)品  
NDP6802(85V高輸入電壓LDO線性穩(wěn)壓器)
SCT2A27/HT7887(帶LDO輸出的100V高電壓輸入、3.5A降壓芯片)
 
 
·藍(lán)牙音箱的音頻功放/升壓/充電管
·單節(jié)鋰電內(nèi)置升壓音頻功放IC選型
·HT7179 12V升24V內(nèi)置
·5V USB輸入、三節(jié)鋰電升壓型
·網(wǎng)絡(luò)主播聲卡專用耳機(jī)放大IC-H
 
M12269 河北發(fā)電機(jī)組 HT366 ACM8629 HT338 

業(yè)務(wù)洽談:手機(jī):13713728695(微信同號)   QQ:3003207580  EMAIL:panbo@szczkjgs.com   聯(lián)系人:潘波

地址:深圳市寶安西鄉(xiāng)航城大道航城創(chuàng)新創(chuàng)業(yè)園A5棟307/309

版權(quán)所有:深圳市永阜康科技有限公司  備案號:粵ICP備17113496號