簡(jiǎn)介
經(jīng)典的四電阻差動(dòng)放大器(Differential amplifier,差分放大器)似乎很簡(jiǎn)單,但其在電路中的性能不佳。本文從實(shí)際生產(chǎn)設(shè)計(jì)出發(fā),討論了分立式電阻、濾波、交流共模抑制和高噪聲增益的不足之處。
大學(xué)里的電子學(xué)課程說(shuō)明了理想運(yùn)算放大器的應(yīng)用,包括反相和同相放大器,然后將它們進(jìn)行組合,構(gòu)建差動(dòng)放大器。圖1所示的經(jīng)典四電阻差動(dòng)放大器非常有用,教科書(shū)和講座40多年來(lái)一直在介紹該器件。
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124319.jpg)
圖1.經(jīng)典差動(dòng)放大器
該放大器的傳遞函數(shù)為:
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124578.jpg)
若R1 = R3且R2 = R4,則公式1簡(jiǎn)化為:
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124944.jpg)
這種簡(jiǎn)化可以在教科書(shū)中看到,但現(xiàn)實(shí)中無(wú)法這樣做,因?yàn)殡娮栌肋h(yuǎn)不可能完全相等。此外,基本電路在其他方面的改變可產(chǎn)生意想不到的行為。下列示例雖經(jīng)過(guò)簡(jiǎn)化以顯示出問(wèn)題的本質(zhì),但來(lái)源于實(shí)際的應(yīng)用問(wèn)題。
CMRR
差動(dòng)放大器的一項(xiàng)重要功能是抑制兩路輸入的共模信號(hào)。如圖1所示,假設(shè)V2為5 V,V1為3 V,則4V為共模輸入。V2比共模電壓高1 V,而V1低1 V.二者之差為2 V,因此R2/R1的"理想"增益施加于2 V.如果電阻非理想,則共模電壓的一部分將被差動(dòng)放大器放大,并作為V1和V2之間的有效電壓差出現(xiàn)在VOUT,無(wú)法與真實(shí)信號(hào)相區(qū)別。差動(dòng)放大器抑制這一部分電壓的能力稱(chēng)為共模抑制(CMR)。該參數(shù)可以表示為比率的形式(CMRR),也可以轉(zhuǎn)換為分貝(dB)。
在1991年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定運(yùn)算放大器為理想運(yùn)算放大器,則共模抑制可以表示為:
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124511.jpg)
其中,Ad為差動(dòng)放大器的增益,t為電阻容差。因此,在單位增益和1%電阻情況下,CMRR等于50 V/V(或約為34 dB);在0.1%電阻情況下,CMRR等于500 V/V(或約為54 dB)——甚至假定運(yùn)算放大器為理想器件,具有無(wú)限的共模抑制能力。若運(yùn)算放大器的共模抑制能力足夠高,則總CMRR受限于電阻匹配。某些低成本運(yùn)算放大器具有60 dB至70 dB的最小CMRR,使計(jì)算更為復(fù)雜。
低容差電阻
第一個(gè)次優(yōu)設(shè)計(jì)如圖2所示。該設(shè)計(jì)為采用OP291的低端電流檢測(cè)應(yīng)用。R1至R4為分立式0.5%電阻。由Pallás-Areny文章中的公式可知,最佳CMR為64 dB.幸運(yùn)的是,共模電壓離接地很近,因此CMR并非該應(yīng)用中主要誤差源。具有1%容差的電流檢測(cè)電阻會(huì)產(chǎn)生1%誤差,但該初始容差可以校準(zhǔn)或調(diào)整。然而,由于工作范圍超過(guò)80°C,因此必須考慮電阻的溫度系數(shù)。
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124566.jpg)
圖2.具有高噪聲增益的低端檢測(cè)
針對(duì)極低的分流電阻值,應(yīng)使用4引腳開(kāi)爾文檢測(cè)電阻。采用高精度0.1Ω電阻,并以幾十分之一英寸的PCB走線(xiàn)直接連接該電阻很容易增加10 mΩ,導(dǎo)致10%以上的誤差。但誤差會(huì)更大,因?yàn)镻CB上的銅走線(xiàn)溫度系數(shù)超過(guò)3000 ppm.
分流電阻值必須仔細(xì)選擇。數(shù)值更高則產(chǎn)生更大的信號(hào)。這是好事,但功耗(I2R)也會(huì)隨之增加,可能高達(dá)數(shù)瓦。采用較小的數(shù)值(mΩ級(jí)別),則線(xiàn)路和PCB走線(xiàn)的寄生電阻可能會(huì)導(dǎo)致較大的誤差。通常使用開(kāi)爾文檢測(cè)來(lái)降低這些誤差?梢允褂靡粋(gè)特殊的四端電阻(比如Ohmite LVK系列),或者對(duì)PCB布局進(jìn)行優(yōu)化以使用標(biāo)準(zhǔn)電阻。若數(shù)值極小,可以使用PCB走線(xiàn),但這樣不會(huì)很精確。
商用四端電阻(比如Ohmite或Vishay的產(chǎn)品)可能需要數(shù)美元或更昂貴,才能提供0.1%容差和極低溫度系數(shù)。進(jìn)行完整的誤差預(yù)算分析可以顯示如何在成本增加最少的情況下改善精度。
有關(guān)無(wú)電流流過(guò)檢測(cè)電阻卻具有較大失調(diào)(31mV)的問(wèn)題,是"軌到軌"運(yùn)算放大器無(wú)法一路擺動(dòng)到負(fù)電源軌(接地)引起的。術(shù)語(yǔ)"軌到軌"具有誤導(dǎo)性:輸出將會(huì)靠近電源軌——比經(jīng)典發(fā)射極跟隨器的輸出級(jí)要近得多——但永遠(yuǎn)不會(huì)真正到達(dá)電源軌。軌到軌運(yùn)算放大器具有最小輸出電壓VOL,數(shù)值等于VCE(SAT)或RDS(ON)×ILOAD,。若失調(diào)電壓等于1.25 mV,噪聲增益等于30,則輸出等于:1.25 mV×30 =±37.5 mV(由于存在VOS,加上VOL導(dǎo)致的35 mV)。根據(jù)VOS極性不同,無(wú)負(fù)載電流的情況下輸出可能高達(dá)72.5 mV.若VOS最大值為30μV,且VOL最大值為8 mV,則現(xiàn)代零漂移放大器(如AD8539)可將總誤差降低至主要由檢測(cè)電阻所導(dǎo)致的水平。
另一個(gè)低端檢測(cè)應(yīng)用
另一個(gè)示例如圖3所示。該示例具有較低的噪聲增益,但它使用3 mV失調(diào)、10-μV/°C失調(diào)漂移和79 dB CMR的低精度四通道運(yùn)算放大器。在0 A至3.6 A范圍內(nèi),要求達(dá)到±5 mA精度。若采用±0.5%檢測(cè)電阻,則要求的±0.14%精度便無(wú)法實(shí)現(xiàn)。若使用100 mΩ電阻,則±5 mA電流可產(chǎn)生±500μV壓降。不幸的是,運(yùn)算放大器隨溫度變化的失調(diào)電壓要比測(cè)量值大十倍。哪怕VOS調(diào)整為零,50°C的溫度變化就會(huì)耗盡全部誤差預(yù)算。若噪聲增益為13,則VOS的任何變化都將擴(kuò)大13倍。為了改善性能,應(yīng)使用零漂移運(yùn)算放大器(比如AD8638、ADA4051或ADA4528)、薄膜電阻陣列以及精度更高的檢測(cè)電阻。
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124914.jpg)
圖3.低端檢測(cè),示例2
高噪聲增益
圖4中的設(shè)計(jì)用來(lái)測(cè)量高端電流,其噪聲增益為250.OP07C運(yùn)算放大器的VOS最大額定值為150μV.最大誤差為150μV×250 = 37.5 mV.為了改善性能,采用ADA4638零漂移運(yùn)算放大器。該器件在–40°C至+125°C溫度范圍內(nèi)的額定失調(diào)電壓為12.5μV.然而,由于高噪聲增益,共模電壓將非常接近檢測(cè)電阻兩端的電壓。OP07C的輸入電壓范圍(IVR)為2 V,這表示輸入電壓必須至少比正電軌低2 V.對(duì)于ADA4638而言,IVR = 3 V.
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124534.jpg)
圖4.高端電流檢測(cè)
單電容滾降
圖5中的示例稍為復(fù)雜。目前為止,所有的等式都針對(duì)電阻而言;但更準(zhǔn)確的做法是,它們應(yīng)當(dāng)將阻抗考慮在內(nèi)。在加入電容的情況下(無(wú)論是故意添加的電容或是寄生電容),交流CMRR均取決于目標(biāo)頻率下的阻抗比。若要滾降該示例中的頻率響應(yīng),則可在反饋電阻兩端添加電容C2,如通常會(huì)在反相運(yùn)算放大器配置中做的那樣。
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124935.jpg)
圖5.嘗試創(chuàng)建低通響應(yīng)
如需匹配阻抗比Z1 = Z3和Z2 = Z4,就必須添加電容C4.市場(chǎng)上很容易就能買(mǎi)到0.1%或更好的電阻,但哪怕是0.5%的電容售價(jià)都要高于1美元。極低頻率下的阻抗可能無(wú)關(guān)緊要,但電容容差或PCB布局產(chǎn)生的兩個(gè)運(yùn)算放大器輸入端0.5 pF的差額可導(dǎo)致10 kHz時(shí)交流CMR下降6 dB.這在使用開(kāi)關(guān)穩(wěn)壓器時(shí)顯得尤為重要。
單芯片差動(dòng)放大器(如AD8271、AD8274或AD8276)具有好得多的交流CMRR性能,因?yàn)檫\(yùn)算放大器的兩路輸入處于芯片上的可控環(huán)境下,且價(jià)格通常較分立式運(yùn)算放大器和四個(gè)精密電阻更為便宜。
運(yùn)算放大器輸入端之間的電容
為了滾降差動(dòng)放大器的響應(yīng),某些設(shè)計(jì)人員會(huì)嘗試在兩個(gè)運(yùn)算放大器輸入端之間添加電容C1以形成差分濾波器,如圖6所示。這樣做對(duì)于儀表放大器而言是可行的,但對(duì)于運(yùn)算放大器卻不可行。VOUT將會(huì)通過(guò)R2而上下移動(dòng),形成閉合環(huán)路。在直流時(shí),這不會(huì)產(chǎn)生任何問(wèn)題,并且電路的表現(xiàn)與等式2所描述的相一致。隨著頻率的增加,C1電抗下降。進(jìn)入運(yùn)算放大器輸入端的反饋降低,從而導(dǎo)致增益上升。最終,運(yùn)算放大器會(huì)在開(kāi)環(huán)狀態(tài)下工作,因?yàn)殡娙菔馆斎攵搪贰?/font>
![](http://www.61ic.com/Technology/UploadFiles_8326/201409/20140925121124693.jpg)
圖6.輸入電容降低高頻反饋
在波特圖上,運(yùn)算放大器的開(kāi)環(huán)增益在–20dB/dec處下降,但噪聲增益在+20 dB/dec處上升,形成–40dB/dec交越。正如控制系統(tǒng)課堂上所學(xué)到的,它必然產(chǎn)生振蕩。一般而言,永遠(yuǎn)不要在運(yùn)算放大器的輸入端之間使用電容(極少數(shù)情況下例外,但本文不作討論)。
結(jié)論
無(wú)論是分立式或是單芯片,四電阻差動(dòng)放大器的使用都非常廣泛。為了獲得穩(wěn)定且值得投入生產(chǎn)的設(shè)計(jì),應(yīng)仔細(xì)考慮噪聲增益、輸入電壓范圍、阻抗比和失調(diào)電壓規(guī)格。 |